Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540733

RESUMO

Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the GnRH superfamily of peptides. In the current study, the two signalling systems, AKH and ACP, of the yellow fever mosquito, Aedes aegypti, were comparatively investigated with respect to ligand binding to their respective receptors. To achieve this, the solution structure of the hormones was determined by nuclear magnetic resonance distance restraint methodology. Atomic-scale models of the two G protein-coupled receptors were constructed with the help of homology modelling. Thereafter, the binding sites of the receptors were identified by blind docking of the ligands to the receptors, and models were derived for each hormone system showing how the ligands are bound to their receptors. Lastly, the two models were validated by comparing the computational results with experimentally derived data available from the literature. This mostly resulted in an acceptable agreement, proving the models to be largely correct and usable. The identification of an antagonist versus a true agonist may, however, require additional testing. The computational data also explains the exclusivity of the two systems that bind only the cognate ligand. This study forms the basis for further drug discovery studies.


Assuntos
Aedes , Hormônios de Inseto , Neuropeptídeos , Oligopeptídeos , Ácido Pirrolidonocarboxílico/análogos & derivados , Febre Amarela , Animais , Ligantes , Modelos Químicos , Filogenia , Evolução Molecular , Neuropeptídeos/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
2.
Theranostics ; 14(5): 1815-1828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505611

RESUMO

Peptides are ideal for theranostic development as they afford rapid target accumulation, fast clearance from background tissue, and exhibit good tissue penetration. Previously, we developed a novel series of peptides that presented discreet folding propensity leading to an optimal candidate [68Ga]Ga-DOTA-GA1 ([D-Glu]6-Ala-Tyr-NMeGly-Trp-NMeNle-Asp-Nal-NH2) with 50 pM binding affinity against cholecystokinin-2 receptors (CCK2R). However, we were confronted with challenges of unfavorably high renal uptake. Methods: A structure activity relationship study was undertaken of the lead theranostic candidate. Prudent structural modifications were made to the peptide scaffold to evaluate the contributions of specific N-terminal residues to the overall biological activity. Optimal candidates were then evaluated in nude mice bearing transfected A431-CCK2 tumors, and their biodistribution was quantitated ex vivo. Results: We identified and confirmed that D-Glu3 to D-Ala3 substitution produced 2 optimal candidates, [68Ga]Ga-DOTA-GA12 and [68Ga]Ga-DOTA-GA13. These radiopeptides presented with high target/background ratios, enhanced tumor retention, excellent metabolic stability in plasma and mice organ homogenates, and a 4-fold reduction in renal uptake, significantly outperforming their non-alanine counterparts. Conclusions: Our study identified novel radiopharmaceutical candidates that target the CCK2R. Their high tumor uptake and reduced renal accumulation warrant clinical translation.


Assuntos
Radioisótopos de Gálio , Receptor de Colecistocinina B , Camundongos , Animais , Receptor de Colecistocinina B/metabolismo , Radioisótopos de Gálio/química , Medicina de Precisão , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Peptídeos/química
3.
Methods ; 224: 10-20, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295893

RESUMO

AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Espectroscopia de Ressonância Magnética/métodos
4.
Adv Mater ; 35(21): e2210392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908046

RESUMO

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico , Insulina
5.
Biophys J ; 122(6): 1058-1067, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680343

RESUMO

Antimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.1 (Cae-1), from Australian tree frogs, has three histidine residues, and thus we studied the pH dependence of its interactions with model cell membranes. Using NMR spectroscopy and molecular dynamics simulations, we showed that Cae-1 induced greater perturbation of the lipid dynamics and water penetrations within the membrane interior in an acidic environment compared with physiological conditions. Using 31P solid-state NMR, the packing, chemical environment, and dynamics of the lipid headgroup were monitored. 2H solid-state NMR showed that Cae-1 ordered the acyl chains of the hydrophobic core of the bilayer. These results supported the molecular dynamics data, which showed that Cae-1 was mainly inserted within the lipid bilayer for both neutral and negatively charged membranes, with the charged residues pulling the water and phosphate groups inward. This could be an early step in the mechanism of membrane disruption by histidine-rich antimicrobial peptides and indicated that Cae-1 acts via a transmembrane mechanism in bilayers of neutral and anionic phospholipid membranes, especially in acidic conditions.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Histidina/química , Austrália , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Água , Concentração de Íons de Hidrogênio
6.
J Struct Biol X ; 6: 100074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147732

RESUMO

Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on E. coli cells. The enhanced 15N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on E. coli cells. DNP-enhanced 15N-observed 31P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main E. coli lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using E. coli PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides in situ will provide greater insight into their mode of action.

7.
J Am Chem Soc ; 144(19): 8536-8550, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35512333

RESUMO

The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.


Assuntos
Proteínas do Capsídeo , Montagem de Vírus , Arginina/metabolismo , Proteínas do Capsídeo/química , Dissulfetos/metabolismo , Vírus da Hepatite B/metabolismo , Filogenia , RNA Viral/genética
8.
Biophys Rev ; 14(1): 67-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340611

RESUMO

Lipidic cubic phase (LCP) structures have been used for stabilisation and crystallisation of membrane proteins and show promising properties as drug carriers. In this mini-review, we present how NMR spectroscopy has played a major role in understanding the physico-chemical properties of LCPs and how recent advances in pulsed field gradient NMR techniques open new perspectives in characterising encapsulated molecules.

9.
Chem Sci ; 13(8): 2226-2237, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310489

RESUMO

Antimicrobial peptides (AMPs) are host defense peptides, and unlike conventional antibiotics, they possess potent broad spectrum activities and, induce little or no antimicrobial resistance. They are attractive lead molecules for rational development to improve their therapeutic index. Our current studies examined dimerization of the de novo designed proline-rich AMP (PrAMP), Chex1-Arg20 hydrazide, via C-terminal thiol addition to a series of bifunctional benzene or phenyl tethers to determine the effect of orientation of the peptides and linker length on antimicrobial activity. Antibacterial assays confirmed that dimerization per se significantly enhances Chex1-Arg20 hydrazide action. Greatest advantage was conferred using perfluoroaromatic linkers (tetrafluorobenzene and octofluorobiphenyl) with the resulting dimeric peptides 6 and 7 exhibiting potent action against Gram-negative bacteria, especially the World Health Organization's critical priority-listed multidrug-resistant (MDR)/extensively drug-resistant (XDR) Acinetobacter baumannii as well as preformed biofilms. Mode of action studies indicated these lead PrAMPs can interact with both outer and inner bacterial membranes to affect the membrane potential and stress response. Additionally, 6 and 7 possess potent immunomodulatory activity and neutralise inflammation via nitric oxide production in macrophages. Molecular dynamics simulations of adsorption and permeation mechanisms of the PrAMP on a mixed lipid membrane bilayer showed that a rigid, planar tethered dimer orientation, together with the presence of fluorine atoms that provide increased bacterial membrane interaction, is critical for enhanced dimer activity. These findings highlight the advantages of use of such bifunctional tethers to produce first-in-class, potent PrAMP dimers against MDR/XDR bacterial infections.

10.
Metabolites ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35208246

RESUMO

As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a 'multi-omics' strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using 'shotgun' direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in 'odd-numbered' acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during ß-oxidation or lipid degradation.

11.
Eur J Med Chem ; 231: 114135, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35085925

RESUMO

The World Health Organisation has deemed several multi-drug resistant (MDR) nosocomial bacterial pathogens to be of significant threat to human health. A stark increase in morbidity, mortality and the burden to healthcare systems around the world can be attributed to the development of resistance in these bacteria. Accordingly, alternative antimicrobial agents have been sought as an attractive means to combat MDR pathogens, with one such example being antimicrobial peptides (AMPs). Given the reported activity of AMPs, including Pardaxin, MSI-78, dermaseptin-PC (DMPC) and Cecropin B, it is important to understand their activities and modes of action against bacteria for further AMP design. In this study, we compared these AMPs against a panel of nosocomial bacterial pathogens, followed by detailed mechanistic studies. It was found that Pardaxin (1-22) and MSI-78 (4-20) displayed the most pronounced antimicrobial activity against the tested bacteria. The mechanistic studies by membrane permeability and molecular dynamics simulation further confirmed the strong membrane interaction and structure of Pardaxin (1-22) and MSI-78 (4-20), which contributed to their potent activity. This study demonstrated a structure and activity guidance for further design of Pardaxin (1-22) and MSI-78 (4-20) as therapeutics against MDR pathogens. The different effects of DMPC (1-19) and Cecropin B (1-21) on membrane integrity and phospholipid membrane interactions provided critical information for the rational design of next-generation analogues with specificity against either Gram-negative or Gram-positive bacteria.


Assuntos
Peptídeos Antimicrobianos , Infecção Hospitalar , Antibacterianos/química , Antibacterianos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120707, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34902692

RESUMO

Nano-drug delivery systems may potentially overcome current challenges in the treatment of Parkinson's disease (PD) by enabling targeted delivery and more efficient blood-brain penetration ability. This study investigates novel gold nanoparticles (AuNPs) to be used as delivery systems for L-DOPA and dopamine by considering their binding capabilities in the presence and absence of a model protein, bovine serum albumin (BSA). Four different AuNPs were prepared by surface functionalization with polyethylene glycol (PEG), 1-adamantylamine (Ad), 1-adamantylglycine (AdGly), and peptidoglycan monomer (PGM). Fluorescence and UV-Vis measurements demonstrated the strongest binding affinity and L-DOPA/dopamine loading efficiency for PGM-functionalized AuNPs with negligible impact of the serum protein presence. Thermodynamic analysis revealed a spontaneous binding process between L-DOPA or dopamine and AuNPs that predominantly occurred through van der Waals interactions/hydrogen bonds or electrostatic interactions. These results represent PGM-functionalized AuNPs as the most efficient at L-DOPA and dopamine binding with a potential to become a drug-delivery system for neurodegenerative diseases. Detailed investigation of L-DOPA/dopamine interactions with different AuNPs was described here for the first time. Moreover, this study highlights a cost- and time-effective methodology for evaluating drug binding to nanomaterials.


Assuntos
Nanopartículas Metálicas , Doença de Parkinson , Dopamina , Sistemas de Liberação de Medicamentos , Ouro , Humanos , Levodopa , Doença de Parkinson/tratamento farmacológico
13.
Biophys J ; 120(20): 4501-4511, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34480924

RESUMO

The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.


Assuntos
Óxidos N-Cíclicos , Peptídeos , Fosfolipídeos , Marcadores de Spin
14.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558564

RESUMO

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Assuntos
Escherichia coli , Peptídeos , Antibacterianos/farmacologia , Bicamadas Lipídicas , Lipídeos , Microscopia de Força Atômica
15.
Biochem Soc Trans ; 49(3): 1457-1465, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156433

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative condition that involves the extracellular accumulation of amyloid plaques predominantly consisting of Aß peptide aggregates. The amyloid plaques and soluble oligomeric species of Aß are believed to be the major cause of synaptic dysfunction in AD brain and their cytotoxic mechanisms have been proposed to involve interactions with cell membranes. In this review, we discuss our solid-state nuclear magnetic resonance (ssNMR) studies of Aß interactions with model membranes.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Amiloide/metabolismo , Encéfalo/patologia , Humanos , Neurônios/metabolismo , Placa Amiloide/metabolismo , Ligação Proteica , Sinapses/metabolismo
16.
ACS Appl Mater Interfaces ; 13(14): 16062-16074, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797891

RESUMO

Gram-negative bacteria are covered by both an inner cytoplasmic membrane (IM) and an outer membrane (OM). Antimicrobial peptides (AMPs) must first permeate through the OM and cell wall before attacking the IM to cause cytoplasmic leakage and kill the bacteria. The bacterial OM is an asymmetric bilayer with the outer leaflet primarily composed of lipopolysaccharides (LPSs) and the inner leaflet composed of phospholipids (PLs). Two cationic α-helical AMPs were designed to target Gram-negative bacteria, a full peptide G(IIKK)3I-NH2 (G3), and a hydrophobic lipopeptide C8-G(IIKK)2I-NH2 (C8G2, with C8 denoting the octanoyl chain). LPS dominates OM functions as the first line of defense against antibiotics, thereby reducing drug susceptibility. This work explores how the two AMPs interact with LPS through several carefully chosen OM models that facilitated measurements from solid-state nuclear magnetic resonance (ss-NMR), small-angle neutron scattering (SANS), and neutron reflectivity (NR). The results revealed that G3 molecules bound preferably to the LPS head region and functioned as bridge molecules to reassemble the dislocated lipids into bilayer stacks. In contrast, C8G2 lipopeptides could quickly penetrate into the central region of the OM to cause direct removal of some membrane lipids. Different structural disruptions implicated different antimicrobial efficacies from these AMPs. The demonstration of the structural features underlying different susceptibilities of the OM to AMPs offers a useful route for the future development of strain-specific AMPs against antimicrobial-resistant pathogens.


Assuntos
Parede Celular/química , Bactérias Gram-Negativas/química , Proteínas Citotóxicas Formadoras de Poros/química , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Conformação Proteica
17.
J Med Chem ; 64(8): 4841-4856, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33826325

RESUMO

Proteins adopt unique folded secondary and tertiary structures that are responsible for their remarkable biological properties. This structural complexity is key in designing efficacious peptides that can mimic the three-dimensional structure needed for biological function. In this study, we employ different chemical strategies to induce and stabilize a ß-hairpin fold of peptides targeting cholecystokinin-2 receptors for theranostic application (combination of a targeted therapeutic and a diagnostic companion). The newly developed peptides exhibited enhanced folding capacity as demonstrated by circular dichroism (CD) spectroscopy, ion-mobility spectrometry-mass spectrometry, and two-dimensional (2D) NMR experiments. Enhanced folding characteristics of the peptides led to increased biological potency, affording four optimal Ga-68 labeled radiotracers ([68Ga]Ga-4b, [68Ga]Ga-11b-13b) targeting CCK-2R. In particular, [68Ga]Ga-12b and [68Ga]Ga-13b presented improved metabolic stability, enhanced cell internalization, and up to 6 fold increase in tumor uptake. These peptides hold great promise as next-generation theranostic radiopharmaceuticals.


Assuntos
Neoplasias/diagnóstico , Peptídeos/química , Compostos Radiofarmacêuticos/química , Receptor de Colecistocinina B/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio/química , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Peptídeos/síntese química , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Medicina de Precisão , Ligação Proteica , Estrutura Terciária de Proteína , Compostos Radiofarmacêuticos/metabolismo , Receptor de Colecistocinina B/química , Distribuição Tecidual , Transplante Heterólogo
18.
Amino Acids ; 53(5): 769-777, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33891157

RESUMO

Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Animais , Anuros , Membrana Celular/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Bicamadas Lipídicas/química , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
19.
J Pept Sci ; 27(8): e3330, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33843136

RESUMO

Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.


Assuntos
Proteínas de Anfíbios/genética , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Anfíbios/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação
20.
ACS Appl Mater Interfaces ; 12(50): 55675-55687, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259204

RESUMO

Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.


Assuntos
Anti-Infecciosos/química , Lipopeptídeos/química , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Lipossomos/química , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Nanofibras/química , Conformação Proteica em alfa-Hélice , Staphylococcus aureus/efeitos dos fármacos , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...